

# Schulcurriculum Physik (Basisfach)

#### Hinweise

- Die Reihenfolge der Themen kann variieren.
- Die angegebenen Nummern beziehen sich auf die Nummerierung im Bildungsplan 2016 Physik.
- An einigen Stellen wird auf prozessbezogene Kompetenzen (pbK) verwiesen, falls diese im aktuellen Zusammenhang eine besonders prominente Rolle spielen. Die pbK des Bildungsplans sind jedoch an vielen anderen Stellen des Unterrichts relevant. Es werden in allen Stunden dieser Jahresplanung pbK trainiert, auch in Stunden, bei denen das nicht explizit ausgewiesen ist.

# Hervorhebungen

# Kursivschreibung (in der linken Spalte):

Begriffe und Formeln, die im Bildungsplan 2016 kursiv gesetzt sind und über die die Schülerinnen und Schüler daher aktiv verfügen müssen.

Formeln, die der Bildungsplan nicht explizit verlangt, sind hier nicht kursiv gesetzt.

# [Themen in eckigen Klammern]:

Diese Themen werden vom Bildungsplan 2016 nicht verlangt.

#### rote Schrift:

Vorschläge für (umfangreichere) Schülerexperimente

### **blaue Schrift**:

Beispiele für mögliche Vertiefungen und Anwendungen grüne Schrift:

Verweise auf Materialien der ZPG VI Physik

## Abkürzungen

BP: Bildungsplan

ibK: inhaltsbezogene Kompetenz pbK: prozessbezogene Kompetenz

BNE: Leitperspektive Bildung für nachhaltige Entwicklung

BO: Leitperspektive berufliche Orientierung

MB: Leitperspektive Medienbildung

VB: Leitperspektive Verbraucherbildung



| Thema                                                                                                                               | Bemerkungen                                                                                                                                                                                                                                   |
|-------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Mechanische Schwingungen                                                                                                            |                                                                                                                                                                                                                                               |
| Periodendauer verschiedener Pendel: Hypothesen experimentell überprüfen; Physik als experimentelle hypothesengeleitete Wissenschaft | Schülerexperimente in arbeitsteiligen Gruppen,<br>pbK 2.1 Erkenntnisgewinnung (1)-(4), pbK 2.3<br>Bewertung (1)-(3)                                                                                                                           |
| Amplitude, Periodendauer, Frequenz,<br>harmonische / nicht harmonische<br>Schwingungen, gedämpfte / ungedämpfte<br>Schwingungen     | Schwingungen beschreiben: sowohl mit s-t-<br>Diagrammen als auch mit charakteristischen<br>Größen;<br>Messwerterfassungssystem nutzen, pbK 2.1<br>Erkenntnisgewinnung (5)                                                                     |
| [Zeigerdarstellung $^1$ einer Schwingung], Winkelgeschwindigkeit (bzw. Kreisfrequenz) $\omega$ , Wh. Bogenmaß                       | Übungen zu Winkeln bei Zeigern im Bogenmaß <sup>1</sup> Die Zeigerdarstellung von Schwingungen und Wellen wird vom Bildungsplan nicht verlangt. Anders als im hier vorgestellten Unterrichtsgang könnte darauf vollständig verzichtet werden. |
| $s(t)$ , $v(t)$ , $a(t)$ für ungedämpfte harmonische Schwingungen, $a(t) = \dot{v}(t) = \ddot{s}(t)$                                | Inkl. Modellieren realer Schwingungen mit<br>vernachlässigbarer Dämpfung, pbK 2.1<br>Erkenntnisgewinnung (9),<br>Messwerterfassungssysteme nutzen, pbK 2.1<br>Experimentieren (5), pbK 2.2 Kommunikation (5)                                  |
| Schwingungen qualitativ erklären (u.a.<br>Rückstellkraft, Durchgang durch die<br>Gleichgewichtslage, Amplitude)                     | Die Newton'schen Prinzipien wiederholen.<br>pbK 2.2 Kommunikation (4)                                                                                                                                                                         |
| Lineares Kraftgesetz als Spezialfal,<br>(Hooke'sche Federn und Gummibänder<br>untersuchen)                                          | Schülerexperimente: digitale Messwerterfassung, pbK 2.1 Experimentieren (5), pbK 2.1 Erkenntnisgewinnung (6), (9), pbK 2.2 Kommunikation (5)                                                                                                  |
| Lineare Rückstellkraft bei harmonischen                                                                                             | Schwingung harmonisch ⇒ lineare Rückstellkraft                                                                                                                                                                                                |
| Schwingungen, Periodendauer T $\left(T=2\pi\cdot\sqrt{\frac{m}{D}}\right)$                                                          | $T = 2\pi \cdot \sqrt{\frac{m}{p}}$ muss nicht hergeleitet werden, ebenso wenig muss die Schwingungs-DGL aufgestellt und                                                                                                                      |
|                                                                                                                                     | gelöst werden. Experimentelle Stationen: <i>D</i> oder <i>m</i> bestimmen, Messung mit Smartphone und App → ZPG VI: 3.1, Geogebra-Einsatz → ZPG VI: 3.2                                                                                       |
| Beispiele für Schwingungen,<br>Schwingungen im Alltag,<br>Untersuchen, ob Schwingungen harmonisch<br>sind                           | pbk 2.1 Wissen erwerben, anwenden (13)<br>mögliche Vertiefung: Erdbeben, Schwingungen bei<br>Gebäuden und Brücken, pbk 2.1 Wissen<br>erwerben, anwenden (12), pbK 2.2<br>Kommunikation (7)                                                    |
| Energie bei Schwingung eines Federpendels erklären und die auftretenden Energieumwandlungen beschreiben $E = \frac{1}{2}Ds^2$       | Die Formel $\mathbf{E} = \frac{1}{2} \mathbf{D} \mathbf{s}^2$ aus Kl. 10 ist als Grundlagenwissen relevant, auch wenn sie im BP für die Kl. 11/12 nicht explizit genannt wird.                                                                |
| [Erzwungene Schwingung und Resonanz]                                                                                                | mögliche Vertiefung: erzwungene Schwingungen<br>und Resonanz mit Beispielen aus dem Alltag                                                                                                                                                    |



| Thema                                                                                                                                                                                                                        | Bemerkungen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Elektrisches Feld                                                                                                                                                                                                            | - Demerkungen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Grundlagen der Elektrostatik: positive und negative Ladung, Kräfte zwischen geladenen Körpern, Einführung des <i>elektrischen Feldes</i>                                                                                     | Versuche zu Phänomenen der Elektrostatik: u. a. auch Schülerexperimente, pbK 2.1 Erkenntnisgewinnung (11)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Wiederholung: z.B. elektrische Stromstärke,<br>Potenziale und Spannungen in elektrischen<br>Stromkreisen, Reihen- und Parallelschaltung<br>( <i>I, U</i> und <i>R</i> ), Stromrichtung und Richtung des<br>Elektronenstroms. | pbK 2.1 Erkenntnisgewinnung (6),<br>pbK 2.2 Kommunikation (6),                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Elektrische Felder beschreiben: Feldlinien  besondere Felder: homogenes Feld, Feld einer Punktladung, Feld eines Dipols, Quellen und Senken, [Abschirmung¹ elektrischer Felder]                                              | Modellcharakter der Feldlinienbilder: pbK 2.1 Erkenntnisgewinnung (9), pbK 2.3 Bewertung (4). Sinnvolle Ergänzung: Felder auch mittels Pfeilscharen <sup>1</sup> oder Farbskalen für Feldstärkebetrag / Energiedichte <sup>1</sup> darstellen. Faraday'scher Käfig, pbK 2.2 Kommunikation (4) <sup>1</sup> Nicht im BP 2016 nicht verlangt.                                                                                                                                                                                                                                                                                                 |
| Elektrische Feldstärke $\left(\vec{E} = \frac{\vec{E}_{ell}}{q}\right)^{1}$ , Feldlinienbilder und elektrische Kräfte                                                                                                        | Proportionaler Zusammenhang zwischen Größen (Diagramm, Tabelle, Formel), pbK 2.1 Erkenntnisgewinnung (6), (7), pbK 2.2 Kommunikation (5), (6), Mögliche Vertiefung: Entstehung von Gewittern, Feldstärke und Feldlinienbilder bei Gewittern, pbK 2.3 Bewertung (7), Leitperspektive PG   1 Hinweis: Im BP 2016 wird hier und bei der Lorentzkraft für die Ladung das kleine q gewählt. Die Formeln gelten aber für beliebige Ladungen und nicht nur für kleine Probeladungen. Die Bewegung von elektrisch geladenen Körpern in elektrischen und magnetischen Feldern wird im Bildungsplan 2016 nicht gefordert (noch nicht einmal erwähnt!) |
| homogenes Feld eines Plattenkondensators und el. Feldstärke $\left(E = \frac{u}{a}\right)$                                                                                                                                   | ph/ 2.1 Edvenatnicgewinnung (10)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Analogien und Unterschiede:  elektrisches Feld und Gravitationsfeld                                                                                                                                                          | pbK 2.1 Erkenntnisgewinnung (10)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| [Beschleunigung geladener Teilchen,                                                                                                                                                                                          | Wiederholung: z.B. zusammengesetzte<br>Bewegungen und Richtung der Geschwindigkeit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Bewegung von geladenen Teilchen in elektrischen Feldern: Bewegung in elektrischen Längs- und Querfeldern]                                                                                                                    | bei zusammengesetzten Bewegungen, Newton'sche Prinzipien (Kräfte in, entgegen und quer zur Bewegungsrichtung) Teilchen in Feldern → ZPG VI: 5. mögliche Vertiefung: Anwendungen bei Druckern, Strahlentherapie, Beschleunigern, pbK 2.3 Bewertung (7), (8), (9), Leitperspektive BO                                                                                                                                                                                                                                                                                                                                                         |



| (                                                                                | Droportionalor and antiproportionalor                                         |
|----------------------------------------------------------------------------------|-------------------------------------------------------------------------------|
| Kondensator und Kapazität $\left(c = \frac{Q}{v}\right)$ ,                       | Proportionaler und antiproportionaler Zusammenhang zwischen Größen (Diagramm, |
| Kapazität eines <i>Plattenkondensators</i>                                       | Tabelle, Formel), pbK 2.1 Erkenntnisgewinnung (6),                            |
| $\left(c = \epsilon_0 \cdot \epsilon_r \cdot \frac{A}{d}\right)$ , Dielektrika   |                                                                               |
|                                                                                  | (7), pbK 2.2 Kommunikation (5), (6), Bauformen                                |
|                                                                                  | von Kondensatoren,                                                            |
|                                                                                  | mögliche Vertiefung: Millikan-Versuch,                                        |
| Kondensatoren als Energiespeicher, im Feld                                       | Man kann z.B. anhand der Herleitung dieser                                    |
| eines Kondensators gespeicherte Energie                                          | Formel die deduktive Methode diskutieren und                                  |
| $\left(E_{Kond} = \frac{1}{2} \cdot C \cdot U^2\right)$                          | von der induktiven abgrenzen. pbK 2.1                                         |
|                                                                                  | Erkenntnisgewinnung (6)                                                       |
| Auf- und Entladevorgang eines Kondensators,                                      | Kondensatoren als Energiespeicher in                                          |
| (qualitativ), U-t-Diagramme                                                      | Kurbeltaschenlampe und Fahrradrücklichtern                                    |
| Thema                                                                            | Bemerkungen                                                                   |
| Das Magnetfeld                                                                   |                                                                               |
| Wiederholung: z.B. Magnete, Magnetpole,                                          | Wiederholung der Grundlagen aus Kl. 7/8,                                      |
| Anziehung und Abstoßung, Magnetfeld,                                             | pbK 2.2 Kommunikation (7)                                                     |
| Magnetfeldlinien; magnetische Felder                                             |                                                                               |
| beschreiben: Stabmagnet, Hufeisenmagnet,                                         |                                                                               |
| gerader stromführender Leiter, Spule, rechte-                                    |                                                                               |
| Faust-Regel                                                                      |                                                                               |
| Kraft auf stromführenden Leiter im                                               | Vergleich der Definition von B mit der Definition                             |
| Magnetfeld, Drei-Finger-Regel, magnetische                                       | von E,                                                                        |
| Flussdichte $\vec{B}$ , $F = B \cdot I \cdot s$                                  | pbK 2.1 Erkenntnisgewinnung (10)                                              |
| Trussuicite B, F = B · F · S                                                     | poly 2.1 Likeliitiiisgewiiiiuiig (10)                                         |
| [Kraft auf eine elektrische Ladung im                                            |                                                                               |
| Magnetfeld, $F_L = q \cdot v \cdot B$ , Drei-Finger-Regel]                       |                                                                               |
|                                                                                  |                                                                               |
| [Bewegung von geladenen Teilchen senkrecht                                       | Wiederholung: gleichförmige Kreisbewegungen,                                  |
| zu homogenen Magnetfeldern, Kreisbahn, e/m-                                      | Zentripetalkraft, (aus Klasse 10 bekannt)                                     |
| Bestimmung]                                                                      | mögliche Vertiefung: Polarlichter                                             |
|                                                                                  |                                                                               |
| [Bewegung von geladenen Teilchen in                                              | Teilchen in Feldern → ZPG VI: 5.                                              |
| gekreuzten homogenen elektrischen und                                            | mögliche Vertiefung:                                                          |
| magnetischen Feldern,                                                            | Massenspektrometer und ihre Anwendungen,                                      |
| Wien-Filter, Massenspektrograph]                                                 | Leitperspektive BO                                                            |
|                                                                                  |                                                                               |
| [elektrische und magnetische Felder bei                                          | mögliche Vertiefung: Beschleuniger in der                                     |
| Teilchenbeschleunigern]                                                          | Teilchenphysik (z.B. LHC) und in der                                          |
|                                                                                  | medizinischen Therapie,                                                       |
|                                                                                  | Teilchen in Feldern → ZPG VI: 5.                                              |
|                                                                                  | pbK 2.3 Bewertung (8), (9), (6), (12), Leitperspektive                        |
|                                                                                  | BO                                                                            |
|                                                                                  |                                                                               |
| Magnetfelder erzeugen: Magnetfeld einer                                          |                                                                               |
| schlanken Spule, Materie im <i>Magnetfeld</i>                                    |                                                                               |
| (relative Permeabilitätszahl), $B = \mu_0 \cdot \mu_r \cdot \frac{n}{1} \cdot I$ |                                                                               |
|                                                                                  |                                                                               |



| Thema                                                                                                                                                               | Bemerkungen                                                                                                                                                                                                                                                                                                                                                       |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Induktion, Elektromagnetismus                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                   |
| Phänomen der Induktion                                                                                                                                              | experimentelle Erkundung von<br>Induktionsvorgängen                                                                                                                                                                                                                                                                                                               |
| Induktion am geraden Leiter im homogenen Magnetfeld, $\mathbf{U_{ind}} = \mathbf{B} \cdot \mathbf{l} \cdot \mathbf{v}$ mithilfe der Lorentzkraft erklären           | Kräftegleichgewicht von Lorentzkraft und elektrischer Feldkraft                                                                                                                                                                                                                                                                                                   |
| Induktionsspannung bei konstanter Spulenfläche qualitativ erkunden, $ U_{ind} = \mathbf{n} \cdot A_{g} \cdot \frac{\Delta B}{\Delta t} $                            | pbK 2.3 Bewertung (11)                                                                                                                                                                                                                                                                                                                                            |
| Induktionsspannung durch Flächenänderung qualitativ erkunden, Formel $U_{ind} = n \cdot B \cdot \frac{\Delta A_s}{\Delta t}$ für die Induktionsspannung             | pbK 2.1 Erkenntnisgewinnung (6),<br>Verallgemeinerung der beiden Formeln:<br>$U_{\text{ind}} = \mathbf{n} \cdot \mathbf{A}_s \cdot \mathbf{B}$ , bzw. $U_{\text{ind}} = \mathbf{n} \cdot \mathbf{B} \cdot \mathbf{A}_s$                                                                                                                                           |
| magnetischer Fluss, allgemeine Form des Induktionsgesetzes: $U_{ind} = -n \cdot \Phi$                                                                               | Begründung für die Einführung des negativen<br>Vorzeichens: Erinnerung an die Lenz'sche Regel                                                                                                                                                                                                                                                                     |
| Auftreten von Induktionsströmen bei<br>geschlossenen Leiterschleifen/ Spulen,<br>Energieerhaltung und Lenz'sche Regel                                               | Übungsaufgaben auch zur Richtung des Induktionsstroms Richtungen bei der Induktion → ZPG VI: 7.1                                                                                                                                                                                                                                                                  |
| technische Anwendungen der Induktion:<br>Generator, Transformator,<br>Induktionsladegerät                                                                           | Schülerexperimente mit Messwerterfassungssystem: Zusammenhang von Drehfrequenz und Spannungsamplitude beim Generator, Modellversuche zu Induktionsladegeräten, pbK 2.2 Kommunikation (3), (4) mögliche Vertiefungen: a) europäisches Wechselspannungsnetz, b) Handyladegerät mit Schaltnetzteil und Gleichrichter c) Kurbel- beziehungsweise Schütteltaschenlampe |
| Selbstinduktion, <i>Induktivität</i> , $U_{ind} = -L \cdot I$ , Induktivität einer schlanken Spule $\left(L = \mu_0 \cdot \mu_r \cdot n^2 \cdot \frac{A}{l}\right)$ | Hinweis: Der Bildungsplan 2016 enthält einen Tippfehler und gibt die Formel für die Induktivität einer schlanken Spule ohne $\mu_r$ an. Unbedingt mit $\mu_r$ unterrichten.                                                                                                                                                                                       |
| im Feld einer Spule gespeicherte Energie $\left(E_{\text{Spuls}} = \frac{1}{2} \cdot L \cdot I^2\right)$                                                            | Analogie zu anderen Energieformeln (E <sub>Kond</sub> , E <sub>span</sub> , E <sub>kin</sub> ) diskutieren, pbK 2.1 Erkenntnisgewinnung (10)                                                                                                                                                                                                                      |
| Schwingungen in elektromagnetischen<br>Schwingkreisen, Energieumwandlungen,<br>Vergleich mit der Schwingung eines<br>Federpendels                                   | pbK 2.1 Erkenntnisgewinnung (10),<br>pbK 2.2 Kommunikation (2)<br>mögliche Vertiefung: Induktionsschleifen zur<br>Steuerung von Ampeln, Schranken und zur<br>Verkehrskontrolle                                                                                                                                                                                    |
| Aussagen der vier Maxwellgleichungen (qualitativ)                                                                                                                   | Maxwellgleichungen beschreiben Ursachen elektrischer und magnetischer Felder und machen Aussagen über die Struktur der Felder, Richtung der Wirbelfelder mit der Faust-Regel Maxwellgleichungen → ZPG VI: 7.1                                                                                                                                                     |



| Thema                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Bemerkungen                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Mechanische Wellen  Mechanische Wellen und ihre Beschreibung:  Wellenlänge $\lambda$ , Frequenz $f$ der Schwingung einzelner Teilchen, Amplitude, Wellenfront,  Wellennormale, Ausbreitungsgeschwindigkeit $c = \lambda \cdot f$ Longitudinalwellen und Transversalwellen, Polarisation, Energietransport  [Zeigermodell bei Wellen],  Auslenkung bei einer eindimensionalen harmonischen Transversalwelle:  Momentanbild $s(x,t_*)$ zum festen Zeitpunkt $t_*$ und Auslenkung $s(x_*,t)$ an einem festen Ort $x_*$ | Einstieg: Beispiele für Wellen sammeln und nach verschiedenen Kriterien gruppieren (mechanische oder elektromagnetische Wellen; Wellenträger bzw. Ausbreitung ein-, zwei- oder dreidimensional;)  z.B. bei Wellen auf einem elastischen Seil oder einer langen Spiralfeder  Bemerkung: Im Weiteren werden ausschließlich harmonische Wellen betrachtet, auch wenn das nicht explizit erwähnt wird.  Arbeiten mit Diagrammen, pbK 2.2 Kommunikation (6) |
| Interferenz bei der Überlagerung eindimensionaler Wellen, Gangunterschied bei maximal konstruktiver und bei vollständig destruktiver Interferenz                                                                                                                                                                                                                                                                                                                                                                    | zeichnerische Konstruktion der <i>Auslenkung</i> zu bestimmten festen <i>Zeitpunkten</i> und [Beschreibung im Zeigermodell]                                                                                                                                                                                                                                                                                                                            |
| Reflexion von eindimensionalen Wellen an festen und losen Enden, eindimensionale stehende Transversalwellen (Bäuche, Knoten, kein Energietransport), Erklärung als Interferenzphänomen, Eigenfrequenzen                                                                                                                                                                                                                                                                                                             | Grundschwingung und Oberschwingungen, Erzwungene Schwingungen auf endlichen Wellenträgern: Eigenfrequenzen und Resonanz, dazu auch Schülerexperimente und Arbeiten mit Simulationen, mögliche Vertiefung: Klangentstehung bei Musikinstrumenten, Frequenzspektren verschiedener Instrumente                                                                                                                                                            |
| Reflexion, Beugung, Interferenz, Brechung [und Energietransport] bei zweidimensionalen Wellen, Wellenphänomene in Alltagssituationen erkennen (z.B. Meereswellen, Schallwellen)                                                                                                                                                                                                                                                                                                                                     | Demo-Versuche mit der Wellenwanne,<br>Untersuchungen mittels Simulationen durch<br>Schülerinnen und Schüler                                                                                                                                                                                                                                                                                                                                            |
| Wellenphänomene mithilfe des Huygens'schen Prinzips erklären (z.B. Reflexion, Beugung und Brechung)                                                                                                                                                                                                                                                                                                                                                                                                                 | pbK 2.1 Erkenntnisgewinnung (11)                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Überlagerung zweidimensionaler kohärenter Wellen mithilfe des Gangunterschieds beschreiben, Anwendung: z.B. aktive Schallunterdrückung durch Gegenschall                                                                                                                                                                                                                                                                                                                                                            | Konstruktion der <i>Amplitude</i> an bestimmten <i>Orten,</i> [Verwendung des Zeigermodells] [auch Beispiele zur Überlagerung dreier <i>Wellen</i> ]                                                                                                                                                                                                                                                                                                   |
| Wiederholung <i>elektromagnetischer</i> Schwingkreis und Dämpfung bei elektromagnetischen Schwingungen                                                                                                                                                                                                                                                                                                                                                                                                              | Dämpfung aufgrund des elektrischen Widerstands<br>und des Abstrahlens elektromagnetischer Wellen.<br>Letzteres kann als Überleitung zum neuen Thema<br>dienen.                                                                                                                                                                                                                                                                                         |
| Eigenschaften von <i>elektromagnetischen Wellen</i> in qualitativen Experimenten,                                                                                                                                                                                                                                                                                                                                                                                                                                   | Versuche: Dezimeterwellengerät,<br>Mikrowellengerät,                                                                                                                                                                                                                                                                                                                                                                                                   |



|                                                                                                                                                                                                                                    | Aufzeigen der Wellennatur: z.B. Reflektion einer Mikrowelle an einer Metallplatte mit stehender Welle.  mögliche Vertiefung: Mikrowellenofen (Experimente)                                                                                                                                                                                                                                                              |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Aussagen der Maxwellgleichungen,<br>Beschreibung von Ursachen und Struktur<br>elektromagn. Felder,                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Polarisation bei elektromagnetischen Wellen                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Überblick über das elektromagnetische<br>Spektrum                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                         |
| [Elektromagnetische Strahlung im Alltag, aktueller Kenntnisstand zu möglichen Auswirkungen auf Menschen]                                                                                                                           | mögliche Themen: Mobilfunk, DECT-Telefone, Stromtrassen, (Informationen z.B. vom Bundesamt für Strahlenschutz) mögliche Vertiefung: wissenschaftliche Erkenntnisse versus Behauptungen und Meinungen pbK 2.3 Bewertung (5), (7), (8), (9)                                                                                                                                                                               |
| Thema<br>Wellenoptik                                                                                                                                                                                                               | Bemerkungen                                                                                                                                                                                                                                                                                                                                                                                                             |
| Phänomene der Mittelstufenoptik: Erklärungen im Strahlenmodell, weitere Phänomene (z.B. Beugung an einer Blende, Dispersion,): Grenzen des Strahlenmodells Bestimmung der Lichtgeschwindigkeit, Licht als elektromagnetische Welle | nach vorbereitender Hausaufgabe: Versuche und Erläuterungen durch Schülergruppen pbK 2.2 Kommunikation (5), (7) pbK 2.3 Bewertung (4) Herausforderung bei historischen Messungen, experimentelle Bestimmung der Lichtgeschwindigkeit c z.B. durch Laufzeitmessung mit einem Oszilloskop mögliche Vertiefung: Funktionsweise von Laser- Entfernungsmessern und ihre Verwendung zur Messung von c in verschiedenen Medien |
| Interferenzmuster am "idealen" Doppelspalt, Formel für Interferenzmaxima und -minima in der Fernfeldnäherung (Fraunhofer-Näherung)                                                                                                 | Zum Begriff "idealer" oder "idealisierter" Doppelspalt: gemeint ist der Doppelspalt ohne Berücksichtigung des Einzelspalteinflusses pbK 2.1 Modellieren (6), (11), pbK 2.2 Kommunikation (5): Formel herleiten können                                                                                                                                                                                                   |
| Interferenz am "idealen" Doppelspalt<br>[Mehrfachspalt <sup>1</sup> ],<br>Intensitätsverteilungen [mit Hilfe des<br>Zeigermodells <sup>2</sup> ] untersuchen: Doppelspalt<br>[sowie 3- und 4-fach-Spalt <sup>1</sup> ]             | Gangunterschied vs. Zeigermodell → ZPG VI: 7.0 <sup>1</sup> Nicht im BP 2016 nicht verlangt. <sup>2</sup> Die Zeigerdarstellung von Schwingungen und Wellen wird vom  Bildungsplan nicht verlangt. Anders als hier vorgestellt könnte  darauf vollständig verzichtet werden.                                                                                                                                            |



| <i>Interferenzmuster</i> am <i>Gitter</i> , Formel für                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Lage der Hauptmaxima berechnen können                                                                                                                                                                                                                                                                                                                                                                                        |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Hauptmaxima in der Fernfeldnäherung beim                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | pbK 2.1 Modellieren (6), (11),                                                                                                                                                                                                                                                                                                                                                                                               |
| Gitter [und Mehrfachspalt]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | pbK 2.2 Kommunikation (5): Formel herleiten                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | können                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Interferenzmuster am Einzelspalt,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Lage der Minima berechnen können                                                                                                                                                                                                                                                                                                                                                                                             |
| Formel für <i>Interferenzminima</i> in der                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | pbK 2.1 Modellieren (6), (11),                                                                                                                                                                                                                                                                                                                                                                                               |
| Fernfeldnäherung beim Einzelspalt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | pbK 2.2 Kommunikation (5): Formel herleiten                                                                                                                                                                                                                                                                                                                                                                                  |
| 5 1 1 1 6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | können                                                                                                                                                                                                                                                                                                                                                                                                                       |
| [Interferenzmuster am realen Doppelspalt und                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Berücksichtigung der endlichen Spaltbreite,                                                                                                                                                                                                                                                                                                                                                                                  |
| Gitter, Untersuchung von                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | pbK 2.1 Modellieren (9)                                                                                                                                                                                                                                                                                                                                                                                                      |
| Interferenzphänomene im Experiment,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Schülerexperimente zur Interferenz am                                                                                                                                                                                                                                                                                                                                                                                        |
| Methoden zur Erhöhung der                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Einzelspalt und am Doppelspalt                                                                                                                                                                                                                                                                                                                                                                                               |
| Messgenauigkeit, Sicherheitsaspekte beim                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Hinweis: Laut BP müssen die Schülerinnen und                                                                                                                                                                                                                                                                                                                                                                                 |
| Umgang mit Lasern ]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Schüler Interferenz selbst experimentell                                                                                                                                                                                                                                                                                                                                                                                     |
| Offigure fille Laserri                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | untersuchen können!                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | pbK 2.1 Experimentieren (3), (4)                                                                                                                                                                                                                                                                                                                                                                                             |
| Appropriate the state of the st | pbK 2.3 Bewerten (1), (2)                                                                                                                                                                                                                                                                                                                                                                                                    |
| Anwendungen optischer Interferenz,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Schülerexperimente: Wellenlängenbestimmung                                                                                                                                                                                                                                                                                                                                                                                   |
| Interferenzphänomene im Alltag (zum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | mit Gittern, Bestimmen des Spurabstands einer                                                                                                                                                                                                                                                                                                                                                                                |
| Beispiel Interferenz an dünnen Schichten,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | CD (oder des Fadenabstands einer Gardine) aus                                                                                                                                                                                                                                                                                                                                                                                |
| Interferenz an Gitterstrukturen, Laser-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Interferenzmustern,                                                                                                                                                                                                                                                                                                                                                                                                          |
| Speckle)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Thema                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Bemerkungen                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Quantenphysik                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                              |
| lichtelektrischer Effekt (Hallwachs-Effekt,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Experimente mit einer Photozelle                                                                                                                                                                                                                                                                                                                                                                                             |
| lichtelektrischer Effekt (Hallwachs-Effekt,<br>Photozelle) und seine Erklärung im Photonen-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ·                                                                                                                                                                                                                                                                                                                                                                                                                            |
| lichtelektrischer Effekt (Hallwachs-Effekt,<br>Photozelle) und seine Erklärung im Photonen-<br>Modell der Quantenphysik (Einstein'sche                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | h-Bestimmung mittels einer Photozelle:                                                                                                                                                                                                                                                                                                                                                                                       |
| lichtelektrischer Effekt (Hallwachs-Effekt,<br>Photozelle) und seine Erklärung im Photonen-<br>Modell der Quantenphysik (Einstein'sche<br>Lichtquantenhypothese),                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <b>h</b> -Bestimmung mittels einer Photozelle:<br>Funktionalen Zusammenhang ermitteln:                                                                                                                                                                                                                                                                                                                                       |
| lichtelektrischer Effekt (Hallwachs-Effekt,<br>Photozelle) und seine Erklärung im Photonen-<br>Modell der Quantenphysik (Einstein'sche<br>Lichtquantenhypothese),                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ħ-Bestimmung mittels einer Photozelle: Funktionalen Zusammenhang ermitteln: Diagramm und als Alternative lineare Regression                                                                                                                                                                                                                                                                                                  |
| lichtelektrischer Effekt (Hallwachs-Effekt,<br>Photozelle) und seine Erklärung im Photonen-<br>Modell der Quantenphysik (Einstein'sche                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <b>h</b> -Bestimmung mittels einer Photozelle:<br>Funktionalen Zusammenhang ermitteln:                                                                                                                                                                                                                                                                                                                                       |
| lichtelektrischer Effekt (Hallwachs-Effekt, Photozelle) und seine Erklärung im Photonen-Modell der Quantenphysik (Einstein'sche Lichtquantenhypothese), Photonenenergie $\left(E_{Quant} = h \cdot f\right)$ und Einstein'sche Gleichung zum Photoeffekt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ħ-Bestimmung mittels einer Photozelle: Funktionalen Zusammenhang ermitteln: Diagramm und als Alternative lineare Regression                                                                                                                                                                                                                                                                                                  |
| lichtelektrischer Effekt (Hallwachs-Effekt, Photozelle) und seine Erklärung im Photonen-Modell der Quantenphysik (Einstein'sche Lichtquantenhypothese), Photonenenergie $(E_{Quant} = h \cdot f)$ und Einstein'sche Gleichung zum Photoeffekt $(E_{kin,max} = h \cdot f - E_A)$ ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ħ-Bestimmung mittels einer Photozelle: Funktionalen Zusammenhang ermitteln: Diagramm und als Alternative lineare Regression                                                                                                                                                                                                                                                                                                  |
| lichtelektrischer Effekt (Hallwachs-Effekt, Photozelle) und seine Erklärung im Photonen-Modell der Quantenphysik (Einstein'sche Lichtquantenhypothese), Photonenenergie $(E_{Quant} = h \cdot f)$ und Einstein'sche Gleichung zum Photoeffekt $(E_{kin,max} = h \cdot f - E_A)$ , Bedeutung von Naturkonstanten am Beispiel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ħ-Bestimmung mittels einer Photozelle: Funktionalen Zusammenhang ermitteln: Diagramm und als Alternative lineare Regression                                                                                                                                                                                                                                                                                                  |
| lichtelektrischer Effekt (Hallwachs-Effekt, Photozelle) und seine Erklärung im Photonen-Modell der Quantenphysik (Einstein'sche Lichtquantenhypothese), Photonenenergie $(E_{Quant} = h \cdot f)$ und Einstein'sche Gleichung zum Photoeffekt $(E_{kin,max} = h \cdot f - E_A)$ ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ħ-Bestimmung mittels einer Photozelle: Funktionalen Zusammenhang ermitteln: Diagramm und als Alternative lineare Regression                                                                                                                                                                                                                                                                                                  |
| lichtelektrischer Effekt (Hallwachs-Effekt, Photozelle) und seine Erklärung im Photonen-Modell der Quantenphysik (Einstein'sche Lichtquantenhypothese), Photonenenergie $(E_{Quant} = h \cdot f)$ und Einstein'sche Gleichung zum Photoeffekt $(E_{kin,max} = h \cdot f - E_A)$ , Bedeutung von Naturkonstanten am Beispiel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | h-Bestimmung mittels einer Photozelle: Funktionalen Zusammenhang ermitteln: Diagramm und als Alternative lineare Regression mit dem WTR nutzen                                                                                                                                                                                                                                                                               |
| lichtelektrischer Effekt (Hallwachs-Effekt, Photozelle) und seine Erklärung im Photonen-Modell der Quantenphysik (Einstein'sche Lichtquantenhypothese), Photonenenergie $(E_{Quant} = h \cdot f)$ und Einstein'sche Gleichung zum Photoeffekt $(E_{kin,max} = h \cdot f - E_A)$ , Bedeutung von Naturkonstanten am Beispiel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | h-Bestimmung mittels einer Photozelle: Funktionalen Zusammenhang ermitteln: Diagramm und als Alternative lineare Regression mit dem WTR nutzen  Naturkonstanten als universelle Konstanten,                                                                                                                                                                                                                                  |
| lichtelektrischer Effekt (Hallwachs-Effekt, Photozelle) und seine Erklärung im Photonen-Modell der Quantenphysik (Einstein'sche Lichtquantenhypothese), Photonenenergie $(E_{Quant} = h \cdot f)$ und Einstein'sche Gleichung zum Photoeffekt $(E_{kin,max} = h \cdot f - E_A)$ , Bedeutung von Naturkonstanten am Beispiel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | h-Bestimmung mittels einer Photozelle: Funktionalen Zusammenhang ermitteln: Diagramm und als Alternative lineare Regression mit dem WTR nutzen  Naturkonstanten als universelle Konstanten,                                                                                                                                                                                                                                  |
| lichtelektrischer Effekt (Hallwachs-Effekt, Photozelle) und seine Erklärung im Photonen-Modell der Quantenphysik (Einstein'sche Lichtquantenhypothese), Photonenenergie $(E_{Quant} = h \cdot f)$ und Einstein'sche Gleichung zum Photoeffekt $(E_{kin,max} = h \cdot f - E_A)$ , Bedeutung von Naturkonstanten am Beispiel der Plank'schen Konstanten                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | h-Bestimmung mittels einer Photozelle: Funktionalen Zusammenhang ermitteln: Diagramm und als Alternative lineare Regression mit dem WTR nutzen  Naturkonstanten als universelle Konstanten,                                                                                                                                                                                                                                  |
| lichtelektrischer Effekt (Hallwachs-Effekt, Photozelle) und seine Erklärung im Photonen-Modell der Quantenphysik (Einstein'sche Lichtquantenhypothese), Photonenenergie $(E_{Quant} = h \cdot f)$ und Einstein'sche Gleichung zum Photoeffekt $(E_{kin,max} = h \cdot f - E_A)$ , Bedeutung von Naturkonstanten am Beispiel der Plank'schen Konstanten                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | h-Bestimmung mittels einer Photozelle: Funktionalen Zusammenhang ermitteln: Diagramm und als Alternative lineare Regression mit dem WTR nutzen  Naturkonstanten als universelle Konstanten,                                                                                                                                                                                                                                  |
| lichtelektrischer Effekt (Hallwachs-Effekt, Photozelle) und seine Erklärung im Photonen-Modell der Quantenphysik (Einstein'sche Lichtquantenhypothese), Photonenenergie $(E_{Quant} = h \cdot f)$ und Einstein'sche Gleichung zum Photoeffekt $(E_{kin,max} = h \cdot f - E_A)$ , Bedeutung von Naturkonstanten am Beispiel der Plank'schen Konstanten $(E_{Quant} = h \cdot f, \ p = \frac{h}{\lambda}),$ $de-Broglie-Wellenlänge$ bei Quanten-objekten                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | h-Bestimmung mittels einer Photozelle: Funktionalen Zusammenhang ermitteln: Diagramm und als Alternative lineare Regression mit dem WTR nutzen  Naturkonstanten als universelle Konstanten,                                                                                                                                                                                                                                  |
| lichtelektrischer Effekt (Hallwachs-Effekt, Photozelle) und seine Erklärung im Photonen-Modell der Quantenphysik (Einstein'sche Lichtquantenhypothese), Photonenenergie $(E_{Quant} = h \cdot f)$ und Einstein'sche Gleichung zum Photoeffekt $(E_{kin,max} = h \cdot f - E_A)$ , Bedeutung von Naturkonstanten am Beispiel der Plank'schen Konstanten                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | h-Bestimmung mittels einer Photozelle: Funktionalen Zusammenhang ermitteln: Diagramm und als Alternative lineare Regression mit dem WTR nutzen  Naturkonstanten als universelle Konstanten, Bedeutung von h in der Physik und im SI  Aufgaben zu Impuls und Wellenlänge bei                                                                                                                                                  |
| lichtelektrischer Effekt (Hallwachs-Effekt, Photozelle) und seine Erklärung im Photonen-Modell der Quantenphysik (Einstein'sche Lichtquantenhypothese), Photonenenergie $(E_{Quant} = h \cdot f)$ und Einstein'sche Gleichung zum Photoeffekt $(E_{kin,max} = h \cdot f - E_A)$ , Bedeutung von Naturkonstanten am Beispiel der Plank'schen Konstanten $(E_{Quant} = h \cdot f, \ p = \frac{h}{\lambda}),$ $de-Broglie-Wellenlänge$ bei Quanten-objekten                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | h-Bestimmung mittels einer Photozelle: Funktionalen Zusammenhang ermitteln: Diagramm und als Alternative lineare Regression mit dem WTR nutzen  Naturkonstanten als universelle Konstanten, Bedeutung von h in der Physik und im SI                                                                                                                                                                                          |
| lichtelektrischer Effekt (Hallwachs-Effekt, Photozelle) und seine Erklärung im Photonen-Modell der Quantenphysik (Einstein'sche Lichtquantenhypothese), Photonenenergie $(E_{Quant} = h \cdot f)$ und Einstein'sche Gleichung zum Photoeffekt $(E_{kin,max} = h \cdot f - E_A)$ , Bedeutung von Naturkonstanten am Beispiel der Plank'schen Konstanten $(E_{Quant} = h \cdot f, \ p = \frac{h}{\lambda}),$ de-Broglie-Wellenlänge bei Quanten-objekten mit Ruhemasse $(\lambda = \frac{h}{p})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | h-Bestimmung mittels einer Photozelle: Funktionalen Zusammenhang ermitteln: Diagramm und als Alternative lineare Regression mit dem WTR nutzen  Naturkonstanten als universelle Konstanten, Bedeutung von h in der Physik und im SI  Aufgaben zu Impuls und Wellenlänge bei Interferenzexperimenten mit Elektronen- oder Atomstrahlen                                                                                        |
| lichtelektrischer Effekt (Hallwachs-Effekt, Photozelle) und seine Erklärung im Photonen-Modell der Quantenphysik (Einstein'sche Lichtquantenhypothese), Photonenenergie $(E_{Quant} = h \cdot f)$ und Einstein'sche Gleichung zum Photoeffekt $(E_{kin,max} = h \cdot f - E_A)$ , Bedeutung von Naturkonstanten am Beispiel der Plank'schen Konstanten $(E_{Quant} = h \cdot f, \ p = \frac{h}{\lambda}),$ de-Broglie-Wellenlänge bei Quanten-objekten mit Ruhemasse $(\lambda = \frac{h}{p})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | h-Bestimmung mittels einer Photozelle: Funktionalen Zusammenhang ermitteln: Diagramm und als Alternative lineare Regression mit dem WTR nutzen  Naturkonstanten als universelle Konstanten, Bedeutung von h in der Physik und im Sl  Aufgaben zu Impuls und Wellenlänge bei Interferenzexperimenten mit Elektronen- oder Atomstrahlen  Filme und Simulationen zu den in der Schule nicht                                     |
| lichtelektrischer Effekt (Hallwachs-Effekt, Photozelle) und seine Erklärung im Photonen-Modell der Quantenphysik (Einstein'sche Lichtquantenhypothese), Photonenenergie $(E_{Quant} = h \cdot f)$ und Einstein'sche Gleichung zum Photoeffekt $(E_{kin,max} = h \cdot f - E_A)$ , Bedeutung von Naturkonstanten am Beispiel der Plank'schen Konstanten $(E_{Quant} = h \cdot f, \ p = \frac{h}{\lambda}),$ de-Broglie-Wellenlänge bei Quanten-objekten mit Ruhemasse $\lambda = \frac{h}{p}$ Licht am Doppelspalt (bei Einzelphotonenexperimenten),                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | h-Bestimmung mittels einer Photozelle: Funktionalen Zusammenhang ermitteln: Diagramm und als Alternative lineare Regression mit dem WTR nutzen  Naturkonstanten als universelle Konstanten, Bedeutung von h in der Physik und im SI  Aufgaben zu Impuls und Wellenlänge bei Interferenzexperimenten mit Elektronen- oder Atomstrahlen  Filme und Simulationen zu den in der Schule nicht durchführbaren Experimenten nutzen, |
| lichtelektrischer Effekt (Hallwachs-Effekt, Photozelle) und seine Erklärung im Photonen-Modell der Quantenphysik (Einstein'sche Lichtquantenhypothese), Photonenenergie $(E_{Quant} = h \cdot f)$ und Einstein'sche Gleichung zum Photoeffekt $(E_{kin,max} = h \cdot f - E_A)$ , Bedeutung von Naturkonstanten am Beispiel der Plank'schen Konstanten $(E_{Quant} = h \cdot f, \ p = \frac{h}{\lambda}),$ de-Broglie-Wellenlänge bei Quanten-objekten mit Ruhemasse $(\lambda = \frac{h}{p})$ Licht am Doppelspalt (bei Einzelphotonenexperimenten), Elektronen und He-Atome am Doppelspalt,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | h-Bestimmung mittels einer Photozelle: Funktionalen Zusammenhang ermitteln: Diagramm und als Alternative lineare Regression mit dem WTR nutzen  Naturkonstanten als universelle Konstanten, Bedeutung von h in der Physik und im Sl  Aufgaben zu Impuls und Wellenlänge bei Interferenzexperimenten mit Elektronen- oder Atomstrahlen  Filme und Simulationen zu den in der Schule nicht                                     |
| lichtelektrischer Effekt (Hallwachs-Effekt, Photozelle) und seine Erklärung im Photonen-Modell der Quantenphysik (Einstein'sche Lichtquantenhypothese), Photonenenergie $(E_{Quant} = h \cdot f)$ und Einstein'sche Gleichung zum Photoeffekt $(E_{kin,max} = h \cdot f - E_A)$ , Bedeutung von Naturkonstanten am Beispiel der Plank'schen Konstanten $(E_{Quant} = h \cdot f, \ p = \frac{h}{\lambda}),$ de-Broglie-Wellenlänge bei Quanten-objekten mit Ruhemasse $\lambda = \frac{h}{p}$ Licht am Doppelspalt (bei Einzelphotonenexperimenten),                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | h-Bestimmung mittels einer Photozelle: Funktionalen Zusammenhang ermitteln: Diagramm und als Alternative lineare Regression mit dem WTR nutzen  Naturkonstanten als universelle Konstanten, Bedeutung von h in der Physik und im SI  Aufgaben zu Impuls und Wellenlänge bei Interferenzexperimenten mit Elektronen- oder Atomstrahlen  Filme und Simulationen zu den in der Schule nicht durchführbaren Experimenten nutzen, |



| Grundzüge der Quantenphysik:                              | Bemerkung:                                      |
|-----------------------------------------------------------|-------------------------------------------------|
| stochastische Vorhersagbarkeit, Fähigkeit zur             | Die Grundzüge können im Unterricht zunächst     |
| Interferenz, Unbestimmtheit von                           | auch nur anhand von einer Sorte von             |
| Eigenschaften                                             | Quantenobjekten (z.B. Photonen oder Elektronen) |
|                                                           | erarbeitet und danach auf andere ausgeweitet    |
|                                                           | werden.                                         |
| Grundzüge der Quantenphysik:                              | Vergleich der stochastischen Vorhersagbarkeit   |
| Messung in der Quantenphysik (unter                       | von Messergebnissen in der Quantenphysik mit    |
| anderem bei Interferenzexperimenten mit                   | dem deterministischen Modell der klassischen    |
| einzelnen <i>Quantenobjekten</i> ),                       | Physik                                          |
| Grundzüge der Quantenphysik:                              | Schüler"experimente" an geeigneten Simulationen |
| Komplementarität am Beispiel von                          |                                                 |
| Interferenzfähigkeit und Welcher-Weg-                     |                                                 |
| Information (zum Beispiel Doppelspalt und                 |                                                 |
| Mach-Zehnder-Interferometer)                              |                                                 |
| Anwenden der Grundzüge der                                | Vorhersagen anhand der Grundzüge treffen und    |
| Quantenphysik auf neue Experimente (zum                   | möglichst mit Schüler"experimente" an           |
| Beispiel Mach-Zender-Interferometer,                      | geeigneten Simulationen überprüfen              |
| Michelson-Interferometer, Einzelspalt)                    |                                                 |
| Zusammenfassender Vergleich der                           |                                                 |
| klassischen Physik mit der Quantenphysik –                |                                                 |
| unter anderem:                                            |                                                 |
| Gemeinsamkeiten und Unterschiede des                      |                                                 |
| Verhaltens von klassischen Wellen,                        | mögliche Vertiefung:                            |
| klassischen <i>Teilchen</i> und <i>Quantenobjekten</i> am | Interpretationen der Quantenphysik              |
| Doppelspalt,                                              |                                                 |
| Determinismus versus                                      |                                                 |
| Wahrscheinlichkeitsaussagen                               |                                                 |



# Schulcurriculum Physik (Leistungsfach)

| Thema                                                                                                                                                                                                                                                    | Bemerkungen                                                                                                                                                                                                                                                      |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Mechanische Schwingungen                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                  |
| Periodendauer verschiedener Pendel: Hypothesen experimentell überprüfen; Physik als experimentelle hypothesengeleitete Wissenschaft                                                                                                                      | Schülerexperimente in arbeitsteiligen Gruppen,<br>pbK 2.1 Erkenntnisgewinnung (1)-(4), pbK 2.3<br>Bewertung (1)-(3)                                                                                                                                              |
| Amplitude, Periodendauer, Frequenz,<br>harmonische / nicht harmonische<br>Schwingungen, gedämpfte / ungedämpfte<br>Schwingungen                                                                                                                          | Schwingungen beschreiben: sowohl mit s-t- Diagrammen als auch mit charakteristischen Größen; Messwerterfassungssystem nutzen, pbK 2.1 Erkenntnisgewinnung (5)                                                                                                    |
| [Zeigerdarstellung <sup>1</sup> einer Schwingung], Winkelgeschwindigkeit (bzw. Kreisfrequenz) $\omega$ , Wh. Bogenmaß                                                                                                                                    | Übungen zu Winkeln bei Zeigern im Bogenmaß <sup>1</sup> Die Zeigerdarstellung von Schwingungen und Wellen wird vom Bildungsplan nicht verlangt. Anders als im hier vorgestellten Unterrichtsgang könnte darauf vollständig verzichtet werden.                    |
| $s(t)$ , $v(t)$ , $a(t)$ für ungedämpfte harmonische Schwingungen, $a(t) = \dot{v}(t) = \ddot{s}(t)$                                                                                                                                                     | Inkl. Modellieren realer Schwingungen mit vernachlässigbarer Dämpfung, pbK 2.1 Erkenntnisgewinnung (9), Messwerterfassungssysteme nutzen, pbK 2.1 Experimentieren (5), pbK 2.2 Kommunikation (5)                                                                 |
| Schwingungen qualitativ erklären (u.a.<br>Rückstellkraft, Durchgang durch die<br>Gleichgewichtslage, Amplitude)                                                                                                                                          | Die Newton'schen Prinzipien wiederholen.<br>pbK 2.2 Kommunikation (4)                                                                                                                                                                                            |
| Lineares Kraftgesetz als Spezialfall,<br>(Hooke'sche Federn und Gummibänder<br>untersuchen)                                                                                                                                                              | Schülerexperimente: digitale Messwerterfassung, pbK 2.1 Experimentieren (5), pbK 2.1 Erkenntnisgewinnung (6), (9), pbK 2.2 Kommunikation (5)                                                                                                                     |
| Lineare Rückstellkraft bei harmonischen Schwingungen, Periodendauer T $\left(T=2\pi\cdot\sqrt{\frac{m}{D}}\right)$                                                                                                                                       | Schwingung harmonisch $\Rightarrow$ lineare Rückstellkraft $T = 2\pi \cdot \sqrt{\frac{m}{D}}$ herleiten. Experimentelle Stationen: $D$ oder $M$ bestimmen, Messung mit Smartphone und App $\Rightarrow$ ZPG VI: 3.1, Geogebra-Einsatz $\Rightarrow$ ZPG VI: 3.2 |
| Schwingungs-Differentialgleichung $\ddot{\mathbf{s}}(t) = -\frac{\mathbf{D}}{m} \cdot \mathbf{s}(t) \text{ bei } harmonischen}$ Schwingungen (Beispiel: Federpendel) DGL durch geeigneten Ansatz lösen, Bedingung $\omega = \sqrt{\frac{\mathbf{D}}{m}}$ | Konzept (Aufbau und Bedeutung) einer DGL<br>erklären. DGL sind nicht aus dem<br>Mathematikunterricht bekannt.<br>Hier wird folgender Nachweis geliefert:<br>lineare Rückstellkraft ⇒ Schwingung harmonisch<br>Übungsaufgaben zur Schwingungs-DGL                 |
| Beispiele für Schwingungen,<br>Schwingungen im Alltag,                                                                                                                                                                                                   | pbk 2.1 Wissen erwerben, anwenden (13)<br>mögliche Vertiefung: Erdbeben, Schwingungen bei<br>Gebäuden und Brücken, pbk 2.1 Wissen                                                                                                                                |



| Untersuchen, ob Schwingungen harmonisch                                    | erwerben, anwenden (12), pbK 2.2                          |
|----------------------------------------------------------------------------|-----------------------------------------------------------|
| sind                                                                       | Kommunikation (7)                                         |
| Fadenpendel, Schwingungsdifferentialgleichung                              | Die DGL gemeinsam entwickeln.                             |
| eines Fadenpendels bei kleinen Auslenkungen,                               | mögliche Vertiefung: Foucault'sches Pendel und            |
| Periodendauer beim Fadenpendel                                             | Erdrotation, Mehrfachpendel                               |
| Energie bei Schwingungen, $E = \frac{1}{2} Ds^2$ , Energie                 | Die Formel $E = \frac{1}{2} Ds^2$ aus Kl. 10 ist als      |
| beim Fadenpendel                                                           | Grundlagenwissen relevant, auch wenn sie im BP            |
|                                                                            | für die Kl. 11/12 nicht explizit genannt wird.            |
| Überlagerung von Schwingungen qualitativ                                   | z.B. Verstärkung, Auslöschung, Schwebung,                 |
| beschreiben                                                                | mögliche Vertiefung: Schwingungen in der Musik            |
|                                                                            | mit Schülerexperimenten, Überlagerung → ZPG               |
| [Franciscope Cohesingung and Decomposit                                    | VI: 3.1, Schwebungen → ZPG VI: 3.0                        |
| [Erzwungene Schwingung und Resonanz]                                       | mögliche Vertiefung: erzwungene Schwingungen              |
|                                                                            | und Resonanz mit Beispielen aus dem Alltag                |
| Thema                                                                      | Bemerkungen                                               |
| Elektrisches Feld                                                          |                                                           |
| Grundlagen der Elektrostatik: positive und                                 | Versuche zu Phänomenen der Elektrostatik: u. a.           |
| negative Ladung, Kräfte zwischen geladenen                                 | auch Schülerexperimente, pbK 2.1                          |
| Körpern, Einführung des elektrischen Feldes                                | Erkenntnisgewinnung (11)                                  |
|                                                                            | Hinweis: Elektrostatik und elektrisches Feld sind         |
|                                                                            | <u>nicht</u> aus der Mittelstufe bekannt.                 |
|                                                                            |                                                           |
| Wiederholung: z.B. elektrische Stromstärke,                                | pbK 2.1 Erkenntnisgewinnung (6),                          |
| Potenziale und Spannungen in elektrischen                                  | pbK 2.2 Kommunikation (6),                                |
| Stromkreisen, Reihen- und Parallelschaltung                                |                                                           |
| (I, U und R), Stromrichtung und Richtung des                               |                                                           |
| Elektronenstroms.                                                          |                                                           |
| Elektrische Felder beschreiben:                                            | Modellcharakter der Feldlinienbilder: pbK 2.1             |
| Feldlinien                                                                 | Erkenntnisgewinnung (9), pbK 2.3 Bewertung (4).           |
| [und andere Darstellungsformen <sup>1</sup> ],                             | Sinnvolle Ergänzung: Felder auch mittels                  |
| 2                                                                          | Pfeilscharen <sup>1</sup> oder Farbskalen für             |
| besondere Felder: homogenes Feld, Feld einer                               | Feldstärkebetrag / Energiedichte <sup>1</sup> darstellen. |
| Punktladung, Feld eines Dipols, Quellen und                                | <sup>1</sup> Nicht im BP 2016 nicht verlangt.             |
| Senken,                                                                    |                                                           |
| [Abschirmung <sup>1</sup> elektrischer Felder]                             | Faraday'scher Käfig, pbK 2.2 Kommunikation (4)            |
|                                                                            |                                                           |
| Elektrische Feldstärke $\left(\vec{E} = \frac{\vec{F}_{al}}{a}\right)^1$ , | Proportionaler Zusammenhang zwischen Größen               |
| Feldlinienbilder und elektrische Kräfte                                    | (Diagramm, Tabelle, Formel), pbK 2.1                      |
|                                                                            | Erkenntnisgewinnung (6), (7), pbK 2.2                     |
|                                                                            | Kommunikation (5), (6),                                   |
|                                                                            | Mögliche Vertiefung: Entstehung von Gewittern,            |
|                                                                            | Feldstärke und Feldlinienbilder bei Gewittern,            |
| I .                                                                        |                                                           |
|                                                                            | pbK 2.3 Bewertung (7), Leitperspektive PG                 |



|                                                                                                                                                                                                                                                                                                                                                                                       | <sup>1</sup> Hinweis: Im BP 2016 wird hier und bei der<br>Lorentzkraft für die Ladung das kleine q gewählt.<br>Die Formeln gelten aber für beliebige Ladungen<br>und nicht nur für kleine Probeladungen.                                                                                                                                                            |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| homogenes Feld eines Plattenkondensators und el. Feldstärke $\left(E = \frac{u}{2}\right)$                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                     |
| Einführung des allgemeinen Begriffs der potentiellen Energie, Nullniveau, potentiellen Energie im homogenen <i>Gravitationsfeld</i> und im <i>homogenen elektrischen Feld</i> , elektrischen Potential $\left(\varphi = \frac{\mathbb{E}_{pat}}{\mathfrak{g}}\right)$ , Äquipotentiallinien, Äquipotentiallinienbilder für <i>homogene Felder</i> , Punktladungen, Feld eines Dipols, | Begriff potentielle Energie $\rightarrow$ ZPG VI: 7.0 Wiederholung: übertragene Energie $\Delta E = F_s \cdot \Delta s$ , Analogie zwischen Äquipotentiallinien im elektrischen Feld und Höhenlinien im Gravitationsfeld, pbK 2.1 Erkenntnisgewinnung (10), Schülerexperimente zum Potential und zu Äquipotentiallinien mit Elektroden in der Potentialwanne        |
| Analogien und Unterschiede:<br>elektrisches Feld und Gravitationsfeld                                                                                                                                                                                                                                                                                                                 | pbK 2.1 Erkenntnisgewinnung (10)                                                                                                                                                                                                                                                                                                                                    |
| Beschleunigung geladener Teilchen,  Bewegung von geladenen Teilchen in elektrischen Feldern: Bewegung in elektrischen Längs- und Querfeldern                                                                                                                                                                                                                                          | Wiederholung: z.B. zusammengesetzte Bewegungen und Richtung der Geschwindigkeit bei zusammengesetzten Bewegungen, Newton'sche Prinzipien (Kräfte in, entgegen und quer zur Bewegungsrichtung) Teilchen in Feldern → ZPG VI: 5. mögliche Vertiefung: Anwendungen bei Druckern, Strahlentherapie, Beschleunigern, pbK 2.3 Bewertung (7), (8), (9), Leitperspektive BO |
| Kondensator und Kapazität $(c = \frac{Q}{u})$ , Kapazität eines Plattenkondensators $(c = \epsilon_0 \cdot \epsilon_r \cdot \frac{A}{d})$ , Dielektrika                                                                                                                                                                                                                               | Proportionaler und antiproportionaler Zusammenhang zwischen Größen (Diagramm, Tabelle, Formel), pbK 2.1 Erkenntnisgewinnung (6), (7), pbK 2.2 Kommunikation (5), (6), Bauformen von Kondensatoren, mögliche Vertiefung: Millikan-Versuch, mögliche Vertiefung: Gesamtkapazität von Kondensatoren in Reihen- und Parallelschaltung inkl. Schülerexperimenten         |



| Kondensatoren als Energiespeicher, im Feld eines Kondensators gespeicherte Energie $\left(E_{Kond} = \frac{1}{2} \cdot C \cdot U^2\right)$ Auf- und Entladevorgang eines Kondensators, U-t-Diagramme zum Aufladen und Entladen                              | Man kann z.B. anhand der Herleitung dieser Formel die deduktive Methode diskutieren und von der induktiven abgrenzen. pbK 2.1 Erkenntnisgewinnung (6)  Schülerexperimente mit Messwerterfassungssystemen, pbK 2.1 Erkenntnisgewinnung (4), (5) [Halbwertszeit und experimentelle Ermittlung der Kapazität], Leuchtdauer einer an einen Kondensator angeschlossenen LED (Schülerexperimente)  mögliche Vertiefungen: |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                             | a) Differentialgleichung für <i>l(t)</i> beim Entladen (Laden), Gleichung für <i>U(t)</i> beim Entladen (Laden) b) Kondensatoren als Energiespeicher in Kurbeltaschenlampe und Fahrradrücklichtern                                                                                                                                                                                                                  |
| Thema  Das Magnetfeld                                                                                                                                                                                                                                       | Bemerkungen                                                                                                                                                                                                                                                                                                                                                                                                         |
| Wiederholung: z.B. Magnete, Magnetpole,<br>Anziehung und Abstoßung, <i>Magnetfeld</i> ,<br>Magnet <i>feldlinien</i> ; <i>magnetische Felder</i><br>beschreiben: Stabmagnet, Hufeisenmagnet,<br>gerader stromführender Leiter, Spule, rechte-<br>Faust-Regel | Wiederholung der Grundlagen aus Kl. 7/8,<br>pbK 2.2 Kommunikation (7)                                                                                                                                                                                                                                                                                                                                               |
| Kraft auf stromführenden Leiter im Magnetfeld, Drei-Finger-Regel, magnetische Flussdichte $\vec{B}$ , $F = B \cdot I \cdot s$                                                                                                                               | Vergleich der Definition von <i>B</i> mit der Definition von <i>E</i> , pbK 2.1 Erkenntnisgewinnung (10)                                                                                                                                                                                                                                                                                                            |
| Kraft auf eine elektrische Ladung im Magnetfeld, $F_L = q \cdot v \cdot B$ , Drei-Finger-Regel                                                                                                                                                              | Schülerexperimente: Untersuchung der<br>magnetischen Flussdichte mit Hallsonden oder<br>anderen Sensoren bei unterschiedlichen<br>Magneten und Magnetfeldern                                                                                                                                                                                                                                                        |
| Bewegung von geladenen Teilchen senkrecht<br>zu homogenen Magnetfeldern, Kreisbahn, e/m-<br>Bestimmung                                                                                                                                                      | Wiederholung: gleichförmige Kreisbewegungen,<br>Zentripetalkraft, (aus Klasse 10 bekannt)<br>mögliche Vertiefung: Polarlichter                                                                                                                                                                                                                                                                                      |
| Bewegung von geladenen Teilchen in<br>gekreuzten homogenen elektrischen und<br>magnetischen Feldern,<br>Wien-Filter, Massenspektrograph                                                                                                                     | Teilchen in Feldern → ZPG VI: 5.  mögliche Vertiefung:  Massenspektrometer und ihre Anwendungen,  Leitperspektive BO                                                                                                                                                                                                                                                                                                |



| elektrische und magnetische Felder bei<br>Teilchenbeschleunigern                                                                                                                                                                                                                                                                                                                                                                                                                                            | mögliche Vertiefung: Beschleuniger in der<br>Teilchenphysik (z.B. LHC) und in der<br>medizinischen Therapie,                                                                                                                                                                                                                                  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Teilchen in Feldern → ZPG VI: 5.                                                                                                                                                                                                                                                                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | pbK 2.3 Bewertung (8), (9), (6), (12), Leitperspektive<br>BO                                                                                                                                                                                                                                                                                  |
| Magnetfelder erzeugen: Magnetfeld einer schlanken Spule, Materie im Magnetfeld (relative Permeabilitätszahl), $\mathbf{B} = \mu_0 \cdot \mu_r \cdot \frac{n}{1} \cdot \mathbf{I}$                                                                                                                                                                                                                                                                                                                           | mögliche Vertiefung: Entwurf, Bau und<br>Optimierung von Elektromagneten mit möglichst<br>großer Flussdichte bei vorgegebener Spannung,<br>Messungen mit Messwerterfassungssystemen                                                                                                                                                           |
| Analogien und Unterschiede zwischen magnetischem Feld, elektrischem Feld und Gravitationsfeld                                                                                                                                                                                                                                                                                                                                                                                                               | pbK 2.1 Erkenntnisgewinnung (10)                                                                                                                                                                                                                                                                                                              |
| Thema                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Bemerkungen                                                                                                                                                                                                                                                                                                                                   |
| Induktion, Elektromagnetismus                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                               |
| Phänomen der Induktion                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | experimentelle Erkundung von<br>Induktionsvorgängen                                                                                                                                                                                                                                                                                           |
| Induktion am geraden Leiter im homogenen                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Kräftegleichgewicht von Lorentzkraft und                                                                                                                                                                                                                                                                                                      |
| Magnetfeld, $U_{ind} = B \cdot l \cdot v$                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | elektrischer Feldkraft                                                                                                                                                                                                                                                                                                                        |
| mithilfe Lorentzkraft erklären                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | pbK 2.3 Bewertung (11)                                                                                                                                                                                                                                                                                                                        |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Schülerexperimente mit                                                                                                                                                                                                                                                                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Schülerexperimente mit<br>Messwerterfassungssystemen                                                                                                                                                                                                                                                                                          |
| Induktionsspannung bei konstanter                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                               |
| Induktionsspannung bei konstanter<br>Spulenfläche qualitativ erkunden,                                                                                                                                                                                                                                                                                                                                                                                                                                      | Messwerterfassungssystemen                                                                                                                                                                                                                                                                                                                    |
| , ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Messwerterfassungssystemen  pbK 2.3 Bewertung (11)                                                                                                                                                                                                                                                                                            |
| Spulenfläche qualitativ erkunden,                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Messwerterfassungssystemen  pbK 2.3 Bewertung (11) Schülerexperimente mit                                                                                                                                                                                                                                                                     |
| Spulenfläche qualitativ erkunden, $U_{ind}=n\cdot A_{g}\cdot \frac{\Delta B}{\Delta t}$ Induktionsspannung durch Flächenänderung                                                                                                                                                                                                                                                                                                                                                                            | Messwerterfassungssystemen  pbK 2.3 Bewertung (11) Schülerexperimente mit Messwerterfassungssystemen                                                                                                                                                                                                                                          |
| Spulenfläche qualitativ erkunden, $U_{ind} = \mathbf{n} \cdot \mathbf{A_s} \cdot \frac{\Delta B}{\Delta t}$                                                                                                                                                                                                                                                                                                                                                                                                 | Messwerterfassungssystemen  pbK 2.3 Bewertung (11) Schülerexperimente mit Messwerterfassungssystemen  pbK 2.1 Erkenntnisgewinnung (6),                                                                                                                                                                                                        |
| Spulenfläche qualitativ erkunden, $U_{ind} = n \cdot A_s \cdot \frac{\Delta B}{\Delta t}$ Induktionsspannung durch Flächenänderung qualitativ erkunden, Formel $U_{ind} = n \cdot B \cdot \frac{\Delta A_s}{\Delta t}$ für                                                                                                                                                                                                                                                                                  | Messwerterfassungssystemen  pbK 2.3 Bewertung (11) Schülerexperimente mit Messwerterfassungssystemen  pbK 2.1 Erkenntnisgewinnung (6), Verallgemeinerung der beiden Formeln:                                                                                                                                                                  |
| Spulenfläche qualitativ erkunden, $ \mathbf{U}_{ind} = \mathbf{n} \cdot \mathbf{A}_s \cdot \frac{\Delta B}{\Delta t} $ Induktionsspannung durch Flächenänderung qualitativ erkunden, Formel $ \mathbf{U}_{ind} = \mathbf{n} \cdot \mathbf{B} \cdot \frac{\Delta A_s}{\Delta t}                                  $                                                                                                                                                                                           | Messwerterfassungssystemen  pbK 2.3 Bewertung (11) Schülerexperimente mit Messwerterfassungssystemen  pbK 2.1 Erkenntnisgewinnung (6), Verallgemeinerung der beiden Formeln: Uind = n · As · B, bzw. Uind = n · B · As                                                                                                                        |
| Spulenfläche qualitativ erkunden, $\mathbf{U}_{ind} = \mathbf{n} \cdot \mathbf{A}_{s} \cdot \frac{\Delta B}{\Delta t}$ Induktionsspannung durch Flächenänderung qualitativ erkunden, Formel $\mathbf{U}_{ind} = \mathbf{n} \cdot \mathbf{B} \cdot \frac{\Delta A_{s}}{\Delta t} \text{ für die Induktionsspannung}$ $magnetischer Fluss, \text{ allgemeine Form des}$                                                                                                                                       | Messwerterfassungssystemen  pbK 2.3 Bewertung (11) Schülerexperimente mit Messwerterfassungssystemen  pbK 2.1 Erkenntnisgewinnung (6), Verallgemeinerung der beiden Formeln: Uind = n · As · B, bzw. Uind = n · B · As  Begründung für die Einführung des negativen                                                                           |
| Spulenfläche qualitativ erkunden, $\mathbf{U}_{ind} = \mathbf{n} \cdot \mathbf{A}_s \cdot \frac{\Delta B}{\Delta t}$ Induktionsspannung durch Flächenänderung qualitativ erkunden, Formel $\mathbf{U}_{ind} = \mathbf{n} \cdot \mathbf{B} \cdot \frac{\Delta A_s}{\Delta t} \text{ für die Induktionsspannung}$ $magnetischer Fluss, \text{ allgemeine Form des } Induktionsgesetzes: \mathbf{U}_{ind} = -\mathbf{n} \cdot \Phi$ Auftreten von Induktionsströmen bei geschlossenen Leiterschleifen/ Spulen, | pbK 2.3 Bewertung (11) Schülerexperimente mit Messwerterfassungssystemen  pbK 2.1 Erkenntnisgewinnung (6), Verallgemeinerung der beiden Formeln: Uind = n · As · B, bzw. Uind = n · B · As  Begründung für die Einführung des negativen Vorzeichens: Erinnerung an die Lenz'sche Regel                                                        |
| Spulenfläche qualitativ erkunden, $\mathbf{U}_{ind} = \mathbf{n} \cdot \mathbf{A}_{s} \cdot \frac{\Delta B}{\Delta t}$ Induktionsspannung durch Flächenänderung qualitativ erkunden, Formel $\mathbf{U}_{ind} = \mathbf{n} \cdot \mathbf{B} \cdot \frac{\Delta A_{s}}{\Delta t} \text{ für die Induktionsspannung}$ $magnetischer Fluss, \text{ allgemeine Form des}$ $Induktionsgesetzes: \mathbf{U}_{ind} = -\mathbf{n} \cdot \Phi$ Auftreten von Induktionsströmen bei                                   | pbK 2.3 Bewertung (11) Schülerexperimente mit Messwerterfassungssystemen  pbK 2.1 Erkenntnisgewinnung (6), Verallgemeinerung der beiden Formeln: Uind = n · As · B, bzw. Uind = n · B · As  Begründung für die Einführung des negativen Vorzeichens: Erinnerung an die Lenz'sche Regel  Übungsaufgaben auch zur Richtung des Induktionsstroms |
| Spulenfläche qualitativ erkunden, $\mathbf{U}_{ind} = \mathbf{n} \cdot \mathbf{A}_s \cdot \frac{\Delta B}{\Delta t}$ Induktionsspannung durch Flächenänderung qualitativ erkunden, Formel $\mathbf{U}_{ind} = \mathbf{n} \cdot \mathbf{B} \cdot \frac{\Delta A_s}{\Delta t} \text{ für die Induktionsspannung}$ $magnetischer Fluss, \text{ allgemeine Form des } Induktionsgesetzes: \mathbf{U}_{ind} = -\mathbf{n} \cdot \Phi$ Auftreten von Induktionsströmen bei geschlossenen Leiterschleifen/ Spulen, | pbK 2.3 Bewertung (11) Schülerexperimente mit Messwerterfassungssystemen  pbK 2.1 Erkenntnisgewinnung (6), Verallgemeinerung der beiden Formeln: Uind = n · As · B, bzw. Uind = n · B · As  Begründung für die Einführung des negativen Vorzeichens: Erinnerung an die Lenz'sche Regel  Übungsaufgaben auch zur Richtung des                  |



| Wirbelströme, technische Anwendungen (z.B. Wirbelstrombremse, Induktionskochfeld)                                                                                                                                             | erwünschte (z.B. Wirbelstrombremse,<br>Induktionskochfeld) oder unerwünschte<br>Auswirkungen (z.B. Erwärmung von Eisenkernen<br>in Spulen) von Wirbelströmen,<br>pbK 2.2 Kommunikation (3), (4)                                                                                                                                               |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| technische Anwendungen der Induktion:<br>Generator, Transformator,<br>Induktionsladegerät                                                                                                                                     | Schülerexperimente mit Messwerterfassungssystem: Zusammenhang von Drehfrequenz und Spannungsamplitude beim Generator, Modellversuche zu Induktionsladegeräten, pbK 2.2 Kommunikation (3), (4)  mögliche Vertiefungen: a) europäisches Wechselspannungsnetz,                                                                                   |
| Selbstinduktion, <i>Induktivität</i> ,                                                                                                                                                                                        | b) Handyladegerät mit Schaltnetzteil und<br>Gleichrichter<br>c) Kurbel- beziehungsweise Schütteltaschenlampe<br>Hinweis: Der Bildungsplan 2016 enthält einen                                                                                                                                                                                  |
| $U_{ind}=-L\cdot \mathbf{f}$ , Induktivität einer schlanken Spule $\left(L=\mu_0\cdot \mu_r\cdot n^2\cdot \frac{A}{l}\right)$                                                                                                 | Tippfehler und gibt die Formel für die Induktivität einer schlanken Spule ohne $\mu_r$ an. Unbedingt mit $\mu_r$ unterrichten.                                                                                                                                                                                                                |
| Selbstinduktion beim Ein- und Ausschalten<br>von Spulen: I-t-Diagramm und U <sub>ind</sub> -t-<br>Diagramme                                                                                                                   | Zusammenhang zwischen den Diagrammen anhand der Formel $v_{ind} = -L \cdot 1$ erklären können, experimentelle Bestimmung der Induktivität einer Spule, Messwerterfassungssystem nutzen, mögliches Auftreten hoher Spannungen beim Ausschalten, pbK 2.3 Bewertung (7), Leitperspektive PG mögliche Vertiefung: DGL beim Ausschalten von Spulen |
| im Feld einer Spule gespeicherte Energie $\left(E_{\text{Spule}} = \frac{1}{2} \cdot L \cdot I^2\right)$                                                                                                                      | Analogie zu anderen Energieformeln $(E_{Rond}, E_{span}, E_{kin})$ diskutieren, pbK 2.1 Erkenntnisgewinnung (10)                                                                                                                                                                                                                              |
| Schwingungen in elektromagnetischen<br>Schwingkreisen, Energieumwandlungen,<br>Vergleich mit der Schwingung eines<br>horizontalen Federpendels                                                                                | pbK 2.1 Erkenntnisgewinnung (10),<br>pbK 2.2 Kommunikation (2)                                                                                                                                                                                                                                                                                |
| Schwingungs-Differentialgleichung eines elektromagnetischen Schwingkreises $\left( \vec{Q}(t) = -\frac{1}{L \cdot c} \cdot Q(t) \right)$ lösen, Formel für die Periodendauer $\left( T = 2\pi \cdot \sqrt{L \cdot C} \right)$ | Vergleich mit der DGL für mechanische Schwingungen,  DGL beim elektromagn. Schwingkreis → ZPG VI: 7.0                                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                               | Schülerexperimente mit Messwerterfassungssystemen,                                                                                                                                                                                                                                                                                            |



|                                                                                                                                                                                                            | nh/ 2.2 Kommunikation                                                                                                                                                                                                                                                                       |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                            | pbK 2.2 Kommunikation                                                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                            | mögliche Vertiefung: Induktionsschleifen zur<br>Steuerung von Ampeln, Schranken und zur<br>Verkehrskontrolle                                                                                                                                                                                |
| Aussagen der vier Maxwellgleichungen (qualitativ)                                                                                                                                                          | Maxwellgleichungen beschreiben Ursachen<br>elektrischer und magnetischer Felder und machen<br>Aussagen über die Struktur der Felder, Richtung<br>der Wirbelfelder mit der Faust-Regel                                                                                                       |
|                                                                                                                                                                                                            | Maxwellgleichungen → ZPG VI: 7.1                                                                                                                                                                                                                                                            |
| Thema                                                                                                                                                                                                      | Bemerkungen                                                                                                                                                                                                                                                                                 |
| Mechanische Wellen                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                             |
| Mechanische Wellen und ihre Beschreibung: Wellenlänge $\lambda$ , Frequenz $f$ der Schwingung einzelner Teilchen, Amplitude, Wellenfront, Wellennormale, Ausbreitungsgeschwindigkeit $c = \lambda \cdot f$ | Einstieg: Beispiele für Wellen sammeln und nach verschiedenen Kriterien gruppieren (mechanische oder elektromagnetische Wellen; Wellenträger bzw. Ausbreitung ein-, zwei- oder dreidimensional;)                                                                                            |
| Longitudinalwellen und Transversalwellen,<br>Polarisation, Energietransport                                                                                                                                | z.B. bei Wellen auf einem elastischen Seil oder<br>einer langen Spiralfeder                                                                                                                                                                                                                 |
| [Zeigermodell bei Wellen], Auslenkung bei einer eindimensionalen harmonischen Transversalwelle: Momentanbild $s(x,t_*)$ zum festen Zeitpunkt $t_*$ und Auslenkung $s(x_*,t)$ an einem festen Ort $x_*$     | Bemerkung: Im Weiteren werden ausschließlich harmonische Wellen betrachtet, auch wenn das nicht explizit erwähnt wird.  Arbeiten mit Diagrammen, pbK 2.2 Kommunikation (6)                                                                                                                  |
| Interferenz bei der Überlagerung eindimensionaler Wellen, Gangunterschied bei maximal konstruktiver und bei vollständig destruktiver Interferenz                                                           | zeichnerische Konstruktion der <i>Auslenkung</i> zu<br>bestimmten festen <i>Zeitpunkten</i> und [Beschreibung<br>im Zeigermodell]                                                                                                                                                           |
| Reflexion von eindimensionalen Wellen an festen und losen Enden, eindimensionale stehende Transversalwellen (Bäuche, Knoten, kein Energietransport), Erklärung als Interferenzphänomen, Eigenfrequenzen    | Grundschwingung und Oberschwingungen, Erzwungene Schwingungen auf endlichen Wellenträgern: Eigenfrequenzen und Resonanz, dazu auch Schülerexperimente und Arbeiten mit Simulationen, mögliche Vertiefung: Klangentstehung bei Musikinstrumenten, Frequenzspektren verschiedener Instrumente |
| Reflexion, Beugung, Interferenz, Brechung [und Energietransport] bei zweidimensionalen Wellen, Wellenphänomene in Alltagssituationen erkennen (z.B. Meereswellen, Schallwellen)                            | Demo-Versuche mit der Wellenwanne, Untersuchungen mittels Simulationen durch Schülerinnen und Schüler, mögliche Vertiefung: zusammenfassendes Training zur Darstellung der Lösungen von                                                                                                     |
|                                                                                                                                                                                                            | Aufgaben / zum Verfassen physikalischer                                                                                                                                                                                                                                                     |



|                                                                                                                                                                                                                                     | Erklärungen (→ Abiturvorbereitung)                                                                                                                                                                                                                 |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                     | pbK 2.2 Kommunikation (3), (4)                                                                                                                                                                                                                     |
| Wellenphänomene mithilfe des<br>Huygens'schen Prinzips erklären (z.B.<br>Reflexion, Beugung und Brechung)                                                                                                                           | pbK 2.1 Erkenntnisgewinnung (11)                                                                                                                                                                                                                   |
| Überlagerung zweidimensionaler kohärenter Wellen mithilfe des Gangunterschieds beschreiben, Anwendung: z.B. aktive Schallunterdrückung durch Gegenschall                                                                            | Konstruktion der <i>Amplitude</i> an bestimmten <i>Orten</i> , [Verwendung des Zeigermodells] [auch Beispiele zur Überlagerung dreier <i>Wellen</i> ]                                                                                              |
| Wiederholung <i>elektromagnetischer Schwingkreis</i> und Dämpfung bei  elektromagnetischen <i>Schwingungen</i>                                                                                                                      | Dämpfung aufgrund des elektrischen Widerstands<br>und des Abstrahlens elektromagnetischer Wellen.<br>Letzteres kann als Überleitung zum neuen Thema<br>dienen.                                                                                     |
| Eigenschaften von <i>elektromagnetischen Wellen</i> in qualitativen Experimenten,                                                                                                                                                   | Versuche: Dezimeterwellengerät, Mikrowellengerät, Aufzeigen der Wellennatur: z.B. Reflektion einer Mikrowelle an einer Metallplatte mit stehender Welle. mögliche Vertiefung: Mikrowellenofen (Experimente)                                        |
| Hertz'scher Dipol als Grenzfall des elektromagnetischen Schwingkreises, Felder in der Nähe eines Hertz'schenDipols und Abstrahlung einer elektromagnetischen Welle, elektromagnetischen Wellen in großer Entfernung zum Sende-Dipol | mögliche Vertiefung: weitere Antennentypen, Antennen in Alltagsgeräten Abstrahlung von elektromagn. Wellen → ZPG VI: 7.0                                                                                                                           |
| Aussagen der Maxwellgleichungen,<br>Beschreibung von Ursachen und Struktur<br>elektromagnetischer Felder,                                                                                                                           | Die Aussagen der Maxwellgleichungen können statt in der Jahrgangsstufe 1 auch erst hier eingeführt werden. Hier können sie als Anlass zur Wiederholung von Kenntnissen aus der Jahrgangsstufe 1 dienen.  Erklärung mithilfe der Maxwellgleichungen |
| Polarisation bei elektromagnetischen Wellen                                                                                                                                                                                         |                                                                                                                                                                                                                                                    |
| Überblick über das elektromagnetische                                                                                                                                                                                               |                                                                                                                                                                                                                                                    |
| Spektrum  [Flaktromagnetische Strahlung im Alltag                                                                                                                                                                                   | mägliche Themen, Mahilfrink, DECT Talafara                                                                                                                                                                                                         |
| [Elektromagnetische Strahlung im Alltag,<br>aktueller Kenntnisstand zu möglichen<br>Auswirkungen auf Menschen]                                                                                                                      | mögliche Themen: Mobilfunk, DECT-Telefone,<br>Stromtrassen,                                                                                                                                                                                        |



|                                                                     | ,                                                                              |
|---------------------------------------------------------------------|--------------------------------------------------------------------------------|
|                                                                     | (Informationen z.B. vom Bundesamt für                                          |
|                                                                     | Strahlenschutz)                                                                |
|                                                                     |                                                                                |
|                                                                     | mögliche Vertiefung: wissenschaftliche                                         |
|                                                                     | Erkenntnisse versus Behauptungen und                                           |
|                                                                     | Meinungen                                                                      |
|                                                                     | pbK 2.3 Bewertung (5), (7), (8), (9)                                           |
| Thema                                                               | Bemerkungen                                                                    |
| Wellenoptik                                                         |                                                                                |
| Phänomene der Mittelstufenoptik:                                    | nach vorbereitender Hausaufgabe:                                               |
| Erklärungen im Strahlenmodell,                                      | Versuche und Erläuterungen durch                                               |
| weitere Phänomene (z.B. Beugung an einer                            | Schülergruppen                                                                 |
| Blende, Dispersion,):                                               | pbK 2.2 Kommunikation (5), (7)                                                 |
| Grenzen des Strahlenmodells                                         | pbK 2.3 Bewertung (4)                                                          |
| Bestimmung der Lichtgeschwindigkeit,                                | Herausforderung bei historischen Messungen,                                    |
| Licht als elektromagnetische Welle                                  | experimentelle Bestimmung der                                                  |
|                                                                     | Lichtgeschwindigkeit c z.B. durch Laufzeitmessung                              |
|                                                                     | mit einem Oszilloskop                                                          |
|                                                                     |                                                                                |
|                                                                     | mögliche Vertiefung: Funktionsweise von Laser-                                 |
|                                                                     | Entfernungsmessern und ihre Verwendung zur                                     |
|                                                                     | Messung von c in verschiedenen Medien                                          |
|                                                                     |                                                                                |
| Interferenzmuster am "idealen" Doppelspalt,                         | Zum Begriff "idealer" oder "idealisierter"                                     |
| Formel für <i>Interferenzmaxima</i> und                             | Doppelspalt: gemeint ist der Doppelspalt ohne                                  |
| -minima in der Fernfeldnäherung                                     | Berücksichtigung des Einzelspalteinflusses                                     |
| (Fraunhofer-Näherung)                                               | pbK 2.1 Modellieren (6), (11),                                                 |
|                                                                     | pbK 2.2 Kommunikation (5): Formel herleiten                                    |
|                                                                     | können                                                                         |
| Interferenz am idealen" [Mehrfachenalt]]                            |                                                                                |
| Interferenz am "idealen" [Mehrfachspalt <sup>1</sup> ],             |                                                                                |
| Intensitätsverteilungen [mit Hilfe des                              | 1 Dar Mahrfachenalt wird im Bildungenlag 2016                                  |
| Zeigermodells <sup>2</sup> ] untersuchen: Doppelspalt               | <sup>1</sup> Der Mehrfachspalt wird im Bildungsplan 2016                       |
| [sowie 3- und 4-fach-Spalt <sup>1</sup> ]                           | nicht verlangt.                                                                |
|                                                                     | <sup>2</sup> Das Zeigermodell wird im Bildungsplan 2016                        |
|                                                                     | nicht verlangt. Gangunterschied vs. Zeigermodell → ZPG VI: 7.0                 |
| Interferenzmuster am Citter Formal für                              | 3                                                                              |
| Interferenzmuster am Gitter, Formel für                             | Lage der Hauptmaxima berechnen können                                          |
| Hauptmaxima in der Fernfeldnäherung beim Gitter [und Mehrfachspalt] | pbK 2.1 Modellieren (6), (11),<br>pbK 2.2 Kommunikation (5): Formel herleiten  |
| Gitter [und Menitachspait]                                          | können                                                                         |
| Interferenzmuster am Einzelspalt,                                   | Lage der Minima berechnen können                                               |
| Formel für <i>Interferenzminima</i> in der                          | pbK 2.1 Modellieren (6), (11),                                                 |
| Fernfeldnäherung beim Einzelspalt                                   | pbK 2.1 Modelliereri (6), (11),<br>pbK 2.2 Kommunikation (5): Formel herleiten |
| Termelananerang benn Linzeispait                                    | können                                                                         |
| Interferenzmuster am realen Doppelspalt und                         | Berücksichtigung der endlichen Spaltbreite,                                    |
| Gitter,                                                             | pbK 2.1 Modellieren (9)                                                        |
| Gitter,                                                             | pull z. i Modelliereri (3)                                                     |



| Untersuchung von Interferenzphänomene im                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                           |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Experiment, Methoden zur Erhöhung der<br>Messgenauigkeit,<br>Sicherheitsaspekte beim Umgang mit Lasern                                                                                                                                                                                                                      | Schülerexperimente zur Interferenz am Einzelspalt und am Doppelspalt Hinweis: Laut BP müssen die Schülerinnen und Schüler Interferenz selbst experimentell untersuchen können! pbK 2.1 Experimentieren (3), (4) pbK 2.3 Bewerten (1), (2) |
| Anwendungen optischer Interferenz,<br>Interferenzphänomene im Alltag (zum<br>Beispiel Interferenz an dünnen Schichten,<br>Interferenz an Gitterstrukturen, Laser-<br>Speckle)                                                                                                                                               | Schülerexperimente: Wellenlängenbestimmung mit Gittern, Bestimmen des Spurabstands einer CD (oder des Fadenabstands einer Gardine) aus <i>Interferenzmustern</i> ,                                                                        |
| Historische Entwicklung von Modellvorstellungen des <i>Lichts</i> (z. B. Lichtstrahlen, Lichtteilchen, Lichtwellen, elektromagn. Wellen, Photonen); Funktion von Modellen in der Physik; Hypothese – Experiment – Bewertung                                                                                                 | Grenzen der jeweiligen Modelle, Zusammenhang zwischen Modellen und experimentellen Möglichkeiten, pbK 2.3 Bewerten (3), (4), grundsätzliche empirische Überprüfbarkeit                                                                    |
|                                                                                                                                                                                                                                                                                                                             | physikalischer Aussagen und Modelle                                                                                                                                                                                                       |
| Thema                                                                                                                                                                                                                                                                                                                       | Bemerkungen                                                                                                                                                                                                                               |
| Quantenphysik                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                           |
| lichtelektrischer Effekt (Hallwachs-Effekt, Photozelle) und seine Erklärung im Photonen-Modell der Quantenphysik (Einstein'sche Lichtquantenhypothese), Photonenenergie $(E_{Quant} = h \cdot f)$ und Einstein'sche Gleichung zum Photoeffekt $(E_{kin,max} = h \cdot f - E_A)$ , Bedeutung von Naturkonstanten am Beispiel | h-Bestimmung mittels einer Photozelle: Funktionalen Zusammenhang ermitteln: Diagramm und als Alternative lineare Regression mit dem WTR nutzen  Naturkonstanten als universelle Konstanten,                                               |
| der Plank'schen Konstanten                                                                                                                                                                                                                                                                                                  | Bedeutung von h in der Physik und im SI                                                                                                                                                                                                   |
| Energie und Impuls bei Quantenobjekten $\left(E_{Quant}=h\cdot f,\ p=\frac{h}{\lambda}\right),$ $de	ext{-}Broglie	ext{-}Wellenlänge}$ bei Quanten-objekten mit Ruhemasse $\left(\lambda=\frac{h}{p}\right)$                                                                                                                 | Bedeutung von h in der Physik und im SI  Aufgaben zu Impuls und Wellenlänge bei Interferenzexperimenten mit Elektronen- oder Atomstrahlen                                                                                                 |
| Energie und Impuls bei Quantenobjekten $\left(E_{Quant}=h\cdot f,\;p=\frac{h}{\lambda}\right),$ $de	ext{-}Broglie	ext{-}Wellenlänge}$ bei Quanten-objekten                                                                                                                                                                  | Bedeutung von h in der Physik und im SI  Aufgaben zu Impuls und Wellenlänge bei Interferenzexperimenten mit Elektronen- oder                                                                                                              |



| C                                                                      | B I                                                                             |
|------------------------------------------------------------------------|---------------------------------------------------------------------------------|
| Grundzüge der Quantenphysik:                                           | Bemerkung:                                                                      |
| stochastische Vorhersagbarkeit, Fähigkeit zur                          | Die Grundzüge können im Unterricht zunächst auch nur anhand von einer Sorte von |
| Interferenz, Unbestimmtheit von                                        |                                                                                 |
| Eigenschaften                                                          | Quantenobjekten (z.B. Photonen oder Elektronen)                                 |
|                                                                        | erarbeitet und danach auf andere ausgeweitet werden.                            |
| Crundzüge der Quantennbysik                                            | Vergleich der stochastischen Vorhersagbarkeit                                   |
| Grundzüge der Quantenphysik:<br>Messung in der Quantenphysik (unter    | von Messergebnissen in der Quantenphysik mit                                    |
| anderem bei Interferenzexperimenten mit                                | dem deterministischen Modell der klassischen                                    |
| einzelnen <i>Quantenobjekten</i> ),                                    | Physik                                                                          |
| Grundzüge der Quantenphysik:                                           | Schüler, experimente" an geeigneten Simulationen                                |
| Komplementarität am Beispiel <i>von</i>                                | Schuler "experimente an geergheten Simulationen                                 |
| Interferenzfähigkeit und Welcher-Weg-                                  |                                                                                 |
| Information (zum Beispiel Doppelspalt und                              |                                                                                 |
| Mach-Zehnder-Interferometer)                                           |                                                                                 |
| Anwenden der Grundzüge der                                             | Vorhersagen anhand der Grundzüge treffen und                                    |
| Quantenphysik auf neue Experimente (zum                                | möglichst mit Schüler"experimente" an                                           |
| Beispiel Mach-Zender-Interferometer,                                   | geeigneten Simulationen überprüfen                                              |
| Michelson-Interferometer, Einzelspalt)                                 | geeigneten simulationen aber praien                                             |
| Heisenberg'sche <i>Unbestimmtheitsrelation</i>                         |                                                                                 |
| bezüglich der Unbestimmtheit von Ort und                               |                                                                                 |
| Impuls $\left(\Delta x \cdot \Delta p_x \ge \frac{h}{4\pi}\right)^*$ , | mögliche Vertiefung: Energie-Zeit-                                              |
|                                                                        | Unbestimmtheit, Tunneleffekt und                                                |
| Konsequenzen aus der                                                   | Rastertunnelmikroskope                                                          |
| Unbestimmtheitsrelation: Aufgabe des                                   | ·                                                                               |
| klassischen Bahnbegriffs und des klassischen<br>Determinismus          |                                                                                 |
| * Bemerkung: Der Bildungsplan nutzt die                                |                                                                                 |
| Abschätzung $\Delta x \cdot \Delta p_x \ge h$ .                        |                                                                                 |
| Zusammenfassender Vergleich der                                        |                                                                                 |
| klassischen Physik mit der Quantenphysik –                             |                                                                                 |
| unter anderem:                                                         |                                                                                 |
| Gemeinsamkeiten und Unterschiede des                                   |                                                                                 |
| Verhaltens von klassischen <i>Wellen</i> ,                             |                                                                                 |
| klassischen <i>Teilchen</i> und <i>Quantenobjekten</i> am              |                                                                                 |
| Doppelspalt,                                                           |                                                                                 |
| Determinismus versus                                                   | mögliche Vertiefung:                                                            |
| Wahrscheinlichkeitsaussagen                                            | Interpretationen der Quantenphysik                                              |
| [Darstellung von Wahrscheinlichkeiten im                               | mögliche Vertiefung                                                             |
| Wolkenmodell, Beschreibung von                                         | (Wolkenmodell: Veranschaulichung der                                            |
| Quantenobjekten im Wolkenmodell (z.B.                                  | Aufenthaltswahrscheinlichkeitsdichte durch                                      |
| Photonen im Interferometer)]                                           | Wolken mit entsprechendem Dichteverlauf,                                        |
|                                                                        | "Wahrscheinlichkeitswolke")                                                     |
| [Quantenverschlüsselung und Experimente                                | mögliche Vertiefung:                                                            |
| zur Quantenphysik]                                                     | Besuch eines Schülerlabors zur Quantenphysik,                                   |
|                                                                        | pbK 2.1 Erkenntnisgewinnung (14)                                                |